Topic Training

Buckling lengths for steel
Table of contents

Introduction...5

Buckling factors and lengths ..6
 - Automatic calculation of buckling ratios .. 6
 - Automatic placement of buckling supports .. 14
 - Manual placement of buckling supports ... 17
 - Manual input of buckling ratios .. 21

Buckling curves ...24

Buckling check ...27

Relative deformation ..31
 - Nodal displacements ... 31
 - Relative deformation ... 32

References and literature ...38
This course will explain the principles and the use of system lengths in SCIA Engineer. The buckling parameters and the related buckling lengths will be discussed, in combination with the relative deformation of 1D elements.

Most of the options in the course can be calculated in SCIA Engineer with the **Concept edition**.

For some functionality an extra module (or edition) is required, but this will always be indicated in those paragraphs.
Buckling factors and lengths

Automatic calculation of buckling ratios

By default, the buckling ratios are calculated by SCIA Engineer. For this, two approximate formulas are used: one formula for a non sway structure (resulting in a buckling factor smaller (or equal) than 1) and one formula for a sway structure (resulting in a buckling factor higher (or equal) than 1):

- For a non sway structure:

\[
k = \frac{(\rho_1 \rho_2 + 5\rho_1 + 5\rho_2 + 24)(\rho_1 \rho_2 + 4\rho_1 + 4\rho_2 + 12)^2}{(2\rho_1 \rho_2 + 11\rho_1 + 5\rho_2 + 24)(2\rho_1 \rho_2 + 5\rho_1 + 11\rho_2 + 24)}
\]

- For a sway structure:

\[
k = x \sqrt{\frac{\pi^2}{\rho_1 x} + 4}
\]

with
- \(k\) the buckling factor
- \(L\) the system length
- \(E\) the modulus of Young
- \(I\) the moment of inertia
- \(C_i\) the stiffness in node \(i\)
- \(M_i\) the moment in node \(i\)
- \(\phi_i\) the rotation in node \(i\)

\[
x = \frac{4\rho_1 \rho_2 + \pi^2 \rho_1}{\pi^2 (\rho_1 + \rho_2) + 8 \rho_1 \rho_2}
\]

\[
\rho_1 = \frac{C_i L}{EI}
\]

\[
C_i = \frac{M_i}{\phi_i}
\]

The values for \(M_i\) and \(\phi_i\) are approximately determined by the internal forces and the deformations, calculated by load cases which generate deformation forms, having an affinity with the buckling form.

The calculation of the \(k\) ratios is automatically done when calculating the structure linearly. For this, two additional load cases are calculated in the background:

- Load case 1:
 - on the beams, the local distributed loads \(q_y=1\ N/m\) and \(q_z=-100\ N/m\) are used
 - on the columns the global distributed loads \(Q_x=10000\ N/m\) and \(Q_y=10000\ N/m\) are used.

- Load case 2:
 - on the beams, the local distributed loads \(q_y=-1\ N/m\) and \(q_z=100\ N/m\) are used
 - on the columns the global distributed loads \(Q_x=-10000\ N/m\) and \(Q_y=-10000\ N/m\) are used.
Since these load cases, and thus the buckling ratios, are calculated during the linear calculation, it is necessary to always perform a linear calculation of the structure. **So when calculating non-linear, the user should also perform a linear calculation otherwise no buckling factors are calculated and no steel code check can be performed.**

Note: The used approach gives good results for frame structures with perpendicular rigid or semi-rigid beam connections. For other cases, the user has to evaluate the presented buckling ratios.

Since the formulas are different for sway and non-sway structure, it is important that the correct options are chosen for the two local directions:

- **y-y:** buckling around the local y-axis (so deformation in the direction of the local z-axis)
- **z-z:** buckling around the local z-axis (so deformation in the direction of the local y-axis)

The option ‘Sway’ or ‘Non-sway’ can be chosen in the menu ‘Steel > Beams > Steel Setup’. These settings apply to the whole structure:
Example: Buckling Factor

In this example, a simple steel frame is used to calculate the buckling ratios. The structure is loaded by the two additional load cases as described on the previous page.

Consider Column B1:
- \(L = 4000 \text{mm} \)
- Set as sway
- In node N1: \(M_y = 0 \text{kNm} \Rightarrow C_2 = \rho_2 = 0.0 \)
- This node N1 defines \(\rho_2 \) because \(\rho_2 \) is always the smaller of the two.
- In node N2 for Load case LC1:
 - \(M_{y1} = 79,883 \text{kNm} \)
 - \(\phi_1 = f_iy = 1,523 \text{mrad} \)
 - \(C_1 = M_{y1}/\phi_1 = 79,883 \text{kNm} / 1,523 \text{mrad} = 52,451 \text{kNm/mrad} = 5,2451 \times 10^{10} \text{Nmm/rad} \)
 - \(E = 210,000 \text{N/mm}^2 \)
 - \(I_y = 16270000 \text{mm}^4 \)
 - \(\rho_1 = \frac{C_1 L}{E I} = \frac{5.2451 \times 10^{10} \text{Nmm/rad}}{210,000 \text{N/mm}^2 \times 16270000 \text{mm}^4} = 6.141 \)
 - \(x = \frac{4\rho_1 \rho_2 + \pi^2 \rho_1}{\pi^2 (\rho_1 + \rho_2) + 8 \rho_1 \rho_2} = \frac{4 \times 6.141 \times 0.0 + \pi^2 \times 6.141}{\pi^2 (6.141 + 0.0) + 8 \times 6.141 \times 0.0} = 1.0 \)
 - \(k = x \frac{\pi^2}{\sqrt{\rho_1^2}} + 4 = 1.0 \frac{\pi^2}{\sqrt{6.141^2}} + 4 = 2.368 \)
 - \(N_{cr} = \frac{\pi^2 E I}{k^2 L^2} = \frac{\pi^2 \times 210,000 \text{N/mm}^2 \times 16270000 \text{mm}^4}{(2.368)^2 (4000)^2} = 3754765 \text{N} = 3754.8 \text{kN} \)

This calculated buckling ratio can also be found in SCIA Engineer.

Under ‘Steel > Beams > Steel slenderness’, the buckling factor \(k_y \) will be found:
This can also be displayed in the preview:

Steel slenderness

<table>
<thead>
<tr>
<th>Member</th>
<th>CS Name</th>
<th>Part</th>
<th>Sway y</th>
<th>Ly [m]</th>
<th>ky [-]</th>
<th>ly [m]</th>
<th>Lam y [m]</th>
<th>I LTB [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>CS1</td>
<td>1</td>
<td>Yes</td>
<td>4,000</td>
<td>2.36</td>
<td>9,469</td>
<td>63,23</td>
<td>4,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>4,000</td>
<td>0.70</td>
<td>2,800</td>
<td>73,92</td>
<td>4,000</td>
</tr>
</tbody>
</table>

With the option **Steel slenderness**, all parameters can be shown graphically and numerically in the preview.

- Sway y (z): whether this member is considered sway or not sway.
- Ly (L_z): the system length of the member. This is the distance between the buckling supports.
- ky (k_z): the buckling ratio. This factor is calculated automatically by SCIA Engineer or can be inserted manually.
- ly (l_z): the buckling length.
 - \(l_y = L_y \times k_y \)
- Lam y (Lam z): the slenderness of the element
- I_yz: the torsional buckling length
- I LTB: the lateral torsional buckling length
The type ‘sway or not sway’ in the steel setup applies for the whole structure. It is also possible to change these (overrule) these settings for each member (or selection of members) separately.

This can be done in two ways with different priority. Column B2 is used.

- **Member Buckling Data.**

 ‘Steel > Beams > Member Check data > Member Buckling Data’.

 ![Diagram of Member Buckling Data](image)

 The option ‘Buckling ky, kz coefficients or buckling lengths’ has to be set to ‘user input’.

 In the ‘Coefficient’ menu, the type for Sway yy and zz can be changed manually.

 When Member Buckling Data is added to a member, a new label will appear on this member. Since this data is **Additional data**, this can be copied to other members.

- **Buckling and relative lengths.**

 ‘Property window of the selected member’.

 ![Property window](image)

 By clicking on the three dots, the ‘Buckling data’ window will open. After clicking on ‘Edit’, the sway type can be changed.
These settings are stored in the 'Buckling system' BC1. This system can be used for other members, if these members have the same amount of construction nodes.

- The **Member Buckling Data** has a higher priority than the **Buckling and relative lengths**.
Example: Several frames

In this example, several steel frames are modeled. In each frame, the same type of column is used, but the beams are adapted. The connection between the columns is fixed. Only in the last frame, this connection is made hinged.

Since the structure is considered as ‘sway’ for y-y, it is expected to have a k_y factor between 1 and 2 for the columns.

With a smaller beam, the k_y factor will be almost 2. With a bigger beam, the k_y factor will be almost 1.

In the frame with the hinged connection between the beams and the columns, the k_y factor of the columns will be equal to 2.
Note: If the buckling ratios are calculated automatically, by default a maximum value of 10 is used. This limitation can be adapted in the Steel setup.
Automatic placement of buckling supports

SCIA Engineer will automatically recognize every nodal support, beam connection, … for the placements of buckling supports.

Example: Buckling supports.esa

In this example, several beams are connected to the columns. A buckling support is automatically placed at every location of a connection between the members.

Note: Buckling supports can only be placed in structural nodes.

Consider column B2. This column has 3 nodes: N3, N16 and N4. The local X direction goes from the bottom to the top of the column, so internal for SCIA Engineer N3 is the first node of this column and N4 is the last one.

In the properties window of this column, the user can choose for ‘Buckling and relative lengths’. With this option, the buckling system of the element can be viewed and changed. Default the following option will appear:

Explanation of the system lengths:

- The first node (according to the local x-axis) is node N3, the last one is node N4.
- yy direction:
 - This means around the local y-axis. So the column will deform in the local z-direction.
 - Around the y-axis, node N3 is supported. In node N16 a horizontal beam in the local z-direction can be found and the column will be supported around the local y-axis (yy) in node N16. Also in node N4 a horizontal beam in the local z-direction can be found and the column will also be supported around the local y-axis (yy) in node N4. This is indicated with the triangles in this window:
 - Supported in node N3
Buckling factors and lengths

- Supported in node N16
- Supported in node N4

zz directions:
- This means **around** the local z-axis. So the column will deform in the y-direction.
- Around the z-axis, node N3 is supported. In node N16 no beam can be found in the local y-direction in this point, thus column B2 is not supported around the z-axis in node N16. In node N4 a horizontal beam in the local y-direction can be found and the column will be supported around the local z-axis (zz) in node N4. This is indicated with the triangles in this window:
 - Supported in node N3
 - Not supported in node N16
 - Supported in node N4

- The system length will be taken as follows:
 - Around the y-axis: the length between node N3 and node N16 for the first part of the column (2.5m) and the length between node N16 and node N4 for the second part of the column (2.5m).
 - Around the z-axis: the length between node N3 and node N4, so 5m.
 - This can also be found in the menu ‘Steel > Beams > Steel slenderness’:

 ![Steel slenderness](image)

 - In this window, the user can easily check the system length (L_y and L_z), the buckling factors (k_y and k_z) and also the buckling length ($l_y = k_y \times L_y$ and $l_z = k_z \times L_z$)

- Compare column B2 and columns B18 and B19 with each other. They should have exactly the same system lengths. The only difference between those columns is that column B2 was inputted as one element of 5m and columns B18+B19 are divided into two parts of 2.5m. SCIA Engineer will consider those two columns also as one buckling system:
 - If the local axis are exactly in the same direction.
 - If no hinges has been inputted between the two columns.

 Note: If members are inserted as a **Polyline**, the direction of the members may be different. The complete polyline is seen as one buckling system.

- There is also a graphical representation of the system lengths.
 - Select column B2.
- Go to the actions menu and click on **Graphical input of system length**:

![Graphical input of system length](image1)

- Now the user can choose between the yy and the zz axis:

![Graphical input of system length](image2)
Manual placement of buckling supports

Since a buckling support (triangle) is placed at every structural node where there is a nodal support or a connecting member, it can be necessary to manually change this configuration.

Select column B3 and open the buckling data window to have a look at the buckling system. The system lengths are as follows (as expected, because there is a horizontal beam in the local z-direction on each node):

![Diagram of buckling supports]

When looking at the rendered view of the structure, it is clear that beam B17 is too weak to have an influence on the system length of column B3. In SCIA Engineer, there is a possibility to exclude a beam from a buckling system. This can be done by inputting **Member buckling data** to the element.

So select beam B17 and go in the Actions menu to **Buckling data**:

![Actions menu with Buckling data selected]

In this menu, it is possible to indicate that beam B17 is a secondary beam and should not be taken into account in the system lengths:
Afterwards, a label will be displayed on beam B17, indicating that this beam consists some buckling data. This buckling data is Additional data and can be copied to other members in the structure.

This can be done by selecting the label, click with the right mouse button in the screen and choose the option Copy add data BB1.

If the additional data (secondary member) is inserted, the buckling system of column B3 can be changed.
Select member B3 and change the Buckling and relative lengths back to ‘Default’. Afterwards, beam B17 will not be included in the system lengths:
It is also possible to change the buckling supports using the option ‘Buckling and relative lengths’ in the property window of an element. By clicking on the 3 dots, the Buckling data window will open.

After clicking on Edit, and using the second tab Buckling data, the user can chose whether the nodes should be fixed or free by ticking on or off the options for yy and zz:

These settings will be stored in the buckling system BC*. This buckling system can be used for other elements, but only of these elements do have the same amount of structural nodes.
The last option to change the settings for fixed or free buckling supports, is to use the **Graphical input of system length** in the action window:

The full red lines are the fixed nodes, the dot lines are the free nodes. By simply clicking on the triangles, the settings for free and fixed will be changed.
As mentioned in a previous chapter, the buckling ratios are automatically calculated by SCIA Engineer during the linear calculation. It is also possible to insert these buckling ratios manually.

This can be done using:

- Member buckling data.
 ‘Steel > Beams > Member Check data > Member buckling data’.

Column B4 will be used to explain this option.

Select member B4 and double click on Member Buckling data.

First of all, the **Buckling ky, kz coefficients or buckling lengths** has to be set to **user input**.

Next for the ky factor, there are three possibilities:

- Calculate: use the buckling ratio calculated by SCIA Engineer
- Factor: insert manually the buckling factor ky.
- Length: insert manually the buckling length ly.

To be able to insert these factors manually, the option **Edit buckling** should be used:

In the next window, the buckling ratio ky or the buckling length ly can be inputted.
For this column B4, a ky ratio of 3 will be inserted manually. After inputting this value, a new label will appear on this column. This Member buckling data is again additional data which can be copied to other elements.

- **Buckling and relative lengths.**
 ‘Property window of the element’ B4.

By clicking on **Edit** in the Buckling data window, in the tab ‘Base settings’, it is also possible to chose to insert a buckling ratio ky or the buckling length ly manually.

In the second tab ‘Buckling data’, these values can be inserted.

With this option, it is possible to insert a different buckling ratio for each part of the column. For this column, a value of 2 will be inserted for ky for both parts of the element.

- **Note**: The two discussed options to insert the buckling ratios (lengths) manually do not have the same priority. The values entered by the Member buckling data will have a higher priority than the values inserted by the Buckling an relative lengths.

This can be easily checked by showing the ky factors for column B4 in the steel menu: ‘Steel > Beams > Steel slenderness’

For column B4, the ky ratio of 3 is used:
Buckling factors and lengths
SCIA Engineer will use the buckling curves according to the code. If the Eurocode is chosen, table 6.2 of EN 1993-1-1 [1] will be used to determine which buckling curve has to be used.

Table 6.2: Selection of buckling curve for a cross-section

<table>
<thead>
<tr>
<th>Cross section</th>
<th>Limits</th>
<th>Buckling about axis</th>
<th>Buckling curve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$t_y \leq 40$ mm</td>
<td>$y-y$</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>40 mm $< t_y \leq 100$ mm</td>
<td>$z-z$</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>$t_y \leq 100$ mm</td>
<td>$y-y$</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>$t_y > 100$ mm</td>
<td>$z-z$</td>
<td>c</td>
</tr>
<tr>
<td>Rolled sections</td>
<td>$h > b \leq 1.2$</td>
<td>$y-y$</td>
<td>a_0</td>
</tr>
<tr>
<td>Welded I-sections</td>
<td>$t_y \leq 40$ mm</td>
<td>$z-z$</td>
<td>b</td>
</tr>
<tr>
<td>Welded box sections</td>
<td>$t_y \geq 40$ mm</td>
<td>$z-z$</td>
<td>c</td>
</tr>
<tr>
<td>Hollow sections</td>
<td>hot finished</td>
<td>any</td>
<td>a_0</td>
</tr>
<tr>
<td></td>
<td>cold formed</td>
<td>any</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>generally (except as below)</td>
<td>any</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>thick welds: $a > 0.5 t_y$</td>
<td>$b/t_y < 30$</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$h/t_w < 30$</td>
<td>c</td>
</tr>
<tr>
<td>U-, T- and solid sections</td>
<td>any</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>L-sections</td>
<td>任何</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>
The automatic use of the correct buckling curve according to the code is supported for the following cross section types:

- Profile Library
- Haunch
- Sheet welded
- Build-in beams
- Thin-walled geometric
- Fabricated

For all other cross section types, the buckling curves for both directions are by default set to d. This can be changed manually by changing the properties of the cross section.

Example: Buckling curves.esa

Open the example Buckling curves. In this example, 3 columns are inserted with a fixed support and loaded with a point force of -100 kN.

The following cross sections are used:

- Profile Library > HEA200
- Geometric shape > default buckling curves d
- Geometric shape > buckling curves manually changed

By default, the buckling curves d are used for both directions for the second and third cross section. For the third cross section, this is manually changed into buckling curve b around the y axis and buckling curve c around the z axis. This way, the same curves are used as for the HEA200 profile.
Note: There has been made some changes since SCIA Engineer version 2013.1.

- SCIA Engineer 2013.0 or older.

 In these versions, it is also possible to manually change the buckling curves for each cross section type. However, if a cross section from the profile library is used, the buckling check will always use the buckling curves according to table 6.2 of EN 1993-1-1 [1]. This means that for these types of cross section, the user input for the buckling curves is neglected in the Steel code check.

- SCIA Engineer 2013.1 or newer.

 The manual modification of the buckling curves in the cross section properties, is always taken into account by the buckling check in the steel menu, also for the cross sections from the profile library.
Buckling check

If the Eurocode is chosen, the flexural buckling check will be executed following EN 1993-1-1 art. 6.3.1. [1]

The compression member should be checked against buckling as follows:

\[
\frac{N_{Ed}}{N_{b,Rd}} \leq 1
\]

Where

- \(N_{Ed} \) is the design value of the compression force.
- \(N_{b,Rd} \) is the design buckling resistance of the buckling member.

Note: In SCIA Engineer, a negative value of \(N_{Ed} \) means a compression force.

- \(N_{b,Rd} = \frac{X \cdot A \cdot f_y}{G \cdot H} \) \(\cdot J \) \(K \) \(L \) \(\) For class 1, 2 or 3 cross sections
- \(N_{b,Rd} = \frac{X \cdot A_{eff} \cdot f_y}{G \cdot H} \) \(\cdot J \) \(K \) \(L \) \(\) For class 4 cross sections

The reduction factor \(\chi \) will be calculated as follows:

\[
\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \lambda^2}} \quad \text{but } \chi \leq 1.0
\]

With

- \(\Phi = 0.5 \left[1 + \alpha (\bar{\lambda} - 0.2) + \bar{\lambda}^2 \right] \)
- \(\bar{\lambda} = \frac{A \cdot f_y}{N_{cr}} \) \(\sqrt{\frac{A_{eff} \cdot f_y}{N_{cr}}} \) \(\) For class 1, 2 or 3 cross-sections
- \(\sqrt{\frac{A_{eff} \cdot f_y}{N_{cr}}} \) \(\) For class 4 cross-sections

\(\alpha \) \(\) Imperfection depending on the buckling curves:

Table 6.1: Imperfection factors for buckling curves

<table>
<thead>
<tr>
<th>Buckling curve</th>
<th>(a_0)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperfection factor (\alpha)</td>
<td>0.13</td>
<td>0.21</td>
<td>0.34</td>
<td>0.49</td>
<td>0.76</td>
</tr>
</tbody>
</table>

\(N_{cr} \) \(\) Critical normal force (Euler force)

\[
N_{cr} = \frac{\pi^2 E I}{k^2 L^2}
\]

Note: For slenderness \(\bar{\lambda} \leq 2 \) or for \(\frac{N_{Ed}}{N_{cr}} \leq 0.04 \) the buckling effects may be ignored and only the cross sectional checks need to be applied.
Example: Buckling check.esa

Open the example Buckling check. In this example, a simple steel hall is modelled. The structure is loaded by the self weight and with a surface load of -1 kN/m² on the roof.

After executing the linear calculation, the buckling check can be performed in the Steel menu. ‘Steel > Beams > ULS Check > Check’.

Select column B4. In the property window of the ULS check, the following properties are chosen:

![Properties window](image)

The selection is set to ‘Current’ to only see the results of the selected member (column B4). The flexural buckling check will be performed in the Stability check and can be shown in the ‘Detailed’ output.

- For load LC1 (self weight):

 ![Flexural Buckling Check](image)

 For load case LC1, the buckling check does not need to be performed since:

 \[
 \frac{N_{Ed}}{N_{cr}} = \frac{3.40}{160.24} = 0.021 \leq 0.04
 \]

- For load LC2 (surface load):
For this load case, the buckling check needs to be performed.

All the parameters needed to calculate the buckling resistance are shown in this table. The buckling resistance is calculated for both the y and z direction. The smallest of these two values is used to perform the check.

- The buckling length = system length * buckling factor
 \[l_y = k_y \times L_y = 4.37 \times 5 = 21.847 \text{ m} \]

- This buckling length is used to calculate the critical normal force (Euler force)
 \[N_{cr} = \frac{\pi^2 EI_{y}}{k^2 L^2} = \frac{\pi^2 E I_y}{l_y^2} = \frac{\pi^2 \times 2.1 \times 10^8 kN/m^2 \times 3.69 \times 10^{-5} m^4}{21.847^2 m^2} = 160,2366 kN \]

- Slenderness
 \[\lambda = \frac{l_y}{i_y} = \frac{21.847 m}{0.082817 m} = 263,798 \]

- Relative slenderness
 \[\bar{\lambda} = \frac{\lambda}{\lambda_1} = \frac{263,79}{93,3} = 2.82 \]

- Limit slenderness
 The limit slenderness is by default taken from EN 1993-1-1, article 6.3.2.3
 For flexural buckling, this is a constant value of 0.2.

- The buckling curve b is used, and thus an imperfection factor \(\alpha \) of 0.34.
- The reduction factor \(\chi \) will be calculated as follows:
 \[\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \bar{\lambda}^2}} \]

And

Flexural Buckling Check

<table>
<thead>
<tr>
<th>Buckling parameters</th>
<th>(wy)</th>
<th>(wz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sway type</td>
<td>sway</td>
<td>non-sway</td>
</tr>
<tr>
<td>System Length L</td>
<td>5.000</td>
<td>5.000</td>
</tr>
<tr>
<td>Buckling factor k</td>
<td>4.37</td>
<td>0.82</td>
</tr>
<tr>
<td>Buckling length Lcr</td>
<td>21.847</td>
<td>4.081</td>
</tr>
<tr>
<td>Critical Euler load Ncr</td>
<td>100.24</td>
<td>1607.78</td>
</tr>
<tr>
<td>Slenderness</td>
<td>263.79</td>
<td>81.77</td>
</tr>
<tr>
<td>Relative slenderness Lambda</td>
<td>2.81</td>
<td>0.87</td>
</tr>
<tr>
<td>Limit slenderness Lambda,0</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Buckling curve</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>Imperfection Alpha</td>
<td>0.34</td>
<td>0.49</td>
</tr>
<tr>
<td>Reduction factor Chi</td>
<td>0.11</td>
<td>0.62</td>
</tr>
<tr>
<td>Buckling resistance Nb,Rd</td>
<td>142.23</td>
<td>781.28</td>
</tr>
</tbody>
</table>

Warning: slenderness 263.79 is larger than 200.00!
\[\Phi = 0.5 \left[1 + a(\lambda - 0.2) + \lambda^2 \right] = 0.5 \left[1 + 0.34 \left(2.81 - 0.2 \right) + 2.81^2 \right] = 4.89275 \]

Thus

\[\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \lambda^2}} = \frac{1}{4.89275 + \sqrt{4.89275^2 - 2.81^2}} = 0.1124 \]

- Buckling resistance

\[N_{b, Rd} = \frac{\chi \cdot A \cdot f_y}{Y_{M1}} = \frac{0.1124 \times 0.00538 \times 235000}{1} = 142,1073 \text{ kN} \]

The difference with the result in SCIA Engineer is caused by rounding errors.

- The buckling check

\[\frac{N_{Ed}}{N_{b, Rd}} = \frac{13.53}{142.23} = 0.9512 \]

- There is also a warning message printed in the output of the Flexural Buckling Check about the slenderness of the member. In the steel setup, a maximal slenderness can be inserted. If the real slenderness of the member is higher than this inserted slenderness, this warning message will be printed.

In SCIA Engineer, by default the maximal slenderness is set to 200:
Nodal displacements

First of all, a simple manual calculation can be done to check the nodal displacements in horizontal vertical direction.

The following limits can be checked:

- $h/150$ for horizontal displacements
- $L/200$ for vertical displacements

These values are guidelines.

Example: Buckling check.esa

Open the example Buckling check. Since this steel hall is only loaded with the self weight of the structure and a vertical surface load, the nodal displacements in the global Y direction are zero. So only the nodal displacements in the global X and Z directions will be checked.

To check these values, the load combination CO1 is used.

Displacement of nodes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N6</td>
<td>CO1/1</td>
<td>-37,0</td>
<td>0,0</td>
<td>-0,2</td>
<td>0,1</td>
<td>8,3</td>
<td>3,2</td>
</tr>
<tr>
<td>N8</td>
<td>CO1/1</td>
<td>37,1</td>
<td>0,0</td>
<td>-0,2</td>
<td>0,3</td>
<td>-8,2</td>
<td>-3,2</td>
</tr>
<tr>
<td>N16</td>
<td>CO1/1</td>
<td>-37,0</td>
<td>0,0</td>
<td>-0,2</td>
<td>-0,1</td>
<td>8,3</td>
<td>-3,2</td>
</tr>
<tr>
<td>N7</td>
<td>CO1/1</td>
<td>0,1</td>
<td>0,0</td>
<td>-223,8</td>
<td>-0,9</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>N1</td>
<td>CO1/1</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,0</td>
<td>-7,0</td>
<td>6,1</td>
</tr>
<tr>
<td>N3</td>
<td>CO1/1</td>
<td>0,0</td>
<td>0,0</td>
<td>-104,0</td>
<td>-667</td>
<td>0,0</td>
<td>0,1</td>
</tr>
<tr>
<td>N22</td>
<td>CO1/1</td>
<td>0,0</td>
<td>0,0</td>
<td>-104,0</td>
<td>667</td>
<td>0,0</td>
<td>-0,1</td>
</tr>
<tr>
<td>N10</td>
<td>CO1/1</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,1</td>
<td>-150</td>
<td>8,2</td>
</tr>
<tr>
<td>N9</td>
<td>CO1/1</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>15,0</td>
<td>-9,6</td>
</tr>
<tr>
<td>N19</td>
<td>CO1/1</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>15,0</td>
<td>9,6</td>
</tr>
</tbody>
</table>

- **Horizontal deformation**

 The maximal nodal displacement in the global X direction is 37,1 mm.

 $h/150 = 5000\text{mm}/150 = 33,33 \text{mm}$

 37,1 mm $> 33,33 \text{mm}$ so this is not ok.

- **Vertical deformation**

 The maximal nodal displacement in the global Z direction is 223,8 mm.

 $L/200 = 12000/200 = 60 \text{mm}$

 223,8 mm $> 60 \text{mm}$ so this is not ok.
Relative deformation

For the relative deformation check, limiting values are inserted in the steel setup for each type of member.

‘Steel > Beams > Steel setup > Relative deformation’.

With the option “Steel -> Beams -> SLS Checks - Relative deformation”, the relative deformations can be checked. The relative deformations are given as absolute value, relative value related to the span, or as unity check related to the limit for the relative value to the span.

The span is defined in the menu “Buckling and relative lengths”, and is the distance between two buckling supports.

Select beam B3.

For the ‘systems’ of the relative deformation, by default a reference is made to the buckling system yy and zz.
This can be changed to create a separate system for the relative deformation.

In the second tab ‘Buckling data’, the nodes can be fixed or free for the relative deformation.

The same can be done using the ‘Graphical input of system length’.
The relative deformation is always regarded according to the local axis of the member. For the deformation in the y direction of the member, there are two supporting nodes for member B3. The distance between these nodes is 6,083m.

- Relative deformation in the y direction (around the z axis).

 In this direction, there are 2 supported nodes. The deformation at the begin and end node is 0,0 mm. The maximal deformation for this beam is 11,1 mm.
Relative deformation

Length = 6,083 m

Deformation $u_y = 11,1$ mm (and 0 mm at the beginning of the beam and 0 mm at the end of the beam)

$u_{yrelative} = 11,1 \text{ mm} - 0.0 \text{ mm} = 11,1 \text{ mm}$

$u_{yrelative} / \text{Length} = 11,1 \text{ mm} / 6083 \text{ mm} = 1/546$

Check = \(\frac{1/546}{1/200} = 0.37 \)

- Relative deformation in the z direction (around the y axis).

In this direction, there is one supported node. The deformation at the begin node is 0.0 mm and at the end node is 105,3 mm.

Length = 6,083 m

Deformation $u_z = 105,3$ mm (and 0 mm at the beginning of the beam)

$u_{zrelative} = 105,3 \text{ mm} - 0.0 \text{ mm} = 105,3 \text{ mm}$

$u_{zrelative} / \text{Length} = 105,3 \text{ mm} / 6083 \text{ mm} = 1/58$

Check = \(\frac{1/58}{1/200} = 3.46 \)
The relative deformation of these members is now calculated with the length of the beam (distance between the buckling nodes). It is also possible to perform the relative deformation check for the complete span of the roof. This can be done by using polylines.

- Draw the members as polylines.

This can only be done if the elements are modeled using the option **Member** in the Structure menu.

- Merging elements to a polyline.

Select beam B17 and B18. Through the option ‘Join curves into polyline’, these 2 beams will become 1 beam.

Since this has an influence on the results, the project needs to be recalculated.

By looking at the buckling system of the new member B18, it is clear that the two elements are taken as one for buckling and relative deformation.
This results in the following check for the relative deformation.

Relative deformation

<table>
<thead>
<tr>
<th>Case - combination</th>
<th>Member</th>
<th>dx [m]</th>
<th>uy [mm]</th>
<th>Rel uy [1/xx]</th>
<th>Check uy [•]</th>
<th>ut [mm]</th>
<th>Rel ut [1/xx]</th>
<th>Check ut [•]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1/1</td>
<td>B18</td>
<td>8.516</td>
<td>-11.7</td>
<td>1/519</td>
<td>0.39</td>
<td>-7.59</td>
<td>1/100</td>
<td>1.25</td>
</tr>
<tr>
<td>CO1/1</td>
<td>B18</td>
<td>0.000</td>
<td>0.0</td>
<td>0</td>
<td>0.00</td>
<td>0.0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>CO1/1</td>
<td>B18</td>
<td>6.083</td>
<td>0.0</td>
<td>1/10000</td>
<td>0.00</td>
<td>-105.3</td>
<td>1/116</td>
<td>1.73</td>
</tr>
</tbody>
</table>
References and literature

[1] Eurocode 3
Design of steel structures
Part 1 - 1 : General rules and rules for buildings
ENV 1993-1-1:1992, 1992